\begin{align*}
= \amp 4 \times \frac {22}{\cancel {7}}\times \cancel{14} \, \text{cm} \times 14\, \text{cm} \\
= \amp 4 \times 22 \times 2\, \text{cm} \times 14\, \text{cm} \\
= \amp 4 \times 22 \times 28\\
= \amp 4 \times616\, \text{cm}^2\\
= \amp 2464 \,\text{cm}^2
\end{align*}
The surface area of the sphere is
\(2464\, \text{cm}^2\) .
b) The
\(\textbf{area of the sphere painted}\) would be the entire surface area.
so the Painted area =
\(2464 \,\text{cm}^2\text{.}\)
c) If the radius is doubled i.e,
(
\(r = 14 \, \text{cm}+ 14\, \text {cm} = 28\, \text{cm}\)),
the new surface area would be:
\begin{align*}
\text{ New surface area} = \amp 4 \frac {22}{\cancel {7}}\times \cancel{28} \, \text{cm} \times 28 \text{cm} \\
= \amp 4 \times 22 \times 4 \, \text{cm} \times 28 \,\text{cm} \\
= \amp 4 \times 22 \times 112 \text{cm}^2\\
= \amp 4 \times616 \, \text{cm}^2\\
= \amp 9856 \, \text{cm}^2
\end{align*}
The surface area of the sphere is
\(9856 \, \text{cm}^2\) if the radius is doubled.