Subsubsection 2.4.3.1 Tangent, Cosine and Sine of 45°
In this section you will use isosceles right-angle triangle to explore on how to find Tangent, Cosine and Sine of \(45^\circ\)
An isosceles triangle is a triangle whose two sides and base angles are equal.
Activity 2.4.7.
\(\textbf{Work in groups}\)
What you require: A ruler, a piece of paper and a protractor.
-
Draw the isosceles right-angle triangle like the one below,(ensure that two sides are equal)
Measure the angle that substend the Hypotenues and the adjacent that is \(\theta\text{.}\)
-
Measure the length \(PQ \, \text{and}\, QR\)
What do you notice about \(PQ \, \text{and}\, QR\)
-
Find the following trigonometrc ratios:
\(\displaystyle tan \, \theta\)
\(\displaystyle cos \, \theta\)
\(\displaystyle sin \, \theta\)
Compare the value of \(cos \, \theta \, \text{and} \,sin \, \theta \text{,}\) How do they relate?
\(\textbf{Key Takeaway}\)
Look at the figure below;
To find the tangent, cosine and sine of \(45^\circ\text{,}\) find first the length \(PR\)
\begin{align*}
PR^2=\amp 1^2+1^2 \\
= \amp 1+1 \\
=\amp 2\\
PR=\amp \sqrt{2}
\end{align*}
Therefore,
\begin{align*}
Sin\,45^\circ=\amp \frac{1}{\sqrt{2}} \\
Cos\,45^\circ=\amp \frac{1}{\sqrt{2}}\\
Tan\,45^\circ=\amp 1
\end{align*}
Subsubsection 2.4.3.2 Tangent, Cosins and Sine of 30° and 60°
In this section, you will be using equilateral triangle to find the Tangent, Cosine and Sine of \(30^\circ \, \text{and}\, 60^\circ\) .
Equilateral triangle is a triangle whose sides and angles are equal.
\(\textbf{Work at home}\)
Use the same procidure above to identify the Tangent, Cosine and Sine of \(30^\circ \, \text{and}\, 60^\circ\) using equilateral triangle.
Discuss your work with other learners in your class.
\(\textbf{Further activity}\)
Activity 2.4.8.
\(\textbf{Work in groups}\)
What you require: Ruler, pencil, protractor, graph paper.
-
Drawing a \(45-45-90\text{:}\)
Draw a square.
Draw a diagonal to make two triangles.
Label angles (\(45^\circ, \,45^\circ,\, 90^\circ\)).
-
Draw \(30-60-90\text{:}\)
Draw an equilateral triangle.
Draw a line from a corner to the middle of the opposite side.
Label angles (\(30^\circ, \,60^\circ,\, 90^\circ\)).
-
Measure and Calculate:
Measure sides of each triangle.
Calculate sin, cos, tan for \(30^\circ, 45^\circ, 60^\circ\) angles.
-
Record your results in the table below.
\({\color{blue} 30^\circ}\) |
\(30-60-90\) |
|
|
|
|
|
|
\({\color{blue} 60^\circ}\) |
\(30-60-90\) |
|
|
|
|
|
|
\({\color{blue} 45^\circ}\) |
\(45-45-90\) |
|
|
|
|
|
|
Discuss your result with other . What do you notice for the \(\textbf{Special Angles}\) (\(30^\circ, 45^\circ, 60^\circ\))?
\(\textbf{Essential concepts.}\)
The figure below shows an equilateral triangle \(ABC\text{.}\) \(AD\) Is the perpendicular bisector of \(BC\text{.}\)
Notice that;
length \(AD\) is given by,
\begin{align*}
AD^2=\amp 2^2-1^2\\
= \amp 4-1\\
AD= \amp \sqrt{3}
\end{align*}
Therefore, \(sin\,30^\circ=\frac{1}{2},\quad cos\,30^\circ=\frac{\sqrt{3}}{2},\quad \text{and} \quad tan\,30^\circ=\frac{1}{\sqrt{3}}\)
Similarly,
\(sin\,60^\circ=\frac{\sqrt{3}}{2},\quad cos\,60^\circ=\frac{1}{2},\quad \text{and} \quad tan\,60^\circ=\sqrt{3}\)
Conclusion
Sin and Cos are just swapped between \(30^\circ \) and \(60^\circ \text{.}\)
Tan \(30^\circ \) is small while tan \(60^\circ \) is large.
\(sin\,\theta \times sin \, \theta \text{,}\) can be written as \(sin^2\,\theta\)
Example 2.4.16.
Simplify the following without using tables or calculator.
\(\displaystyle sin \,30^\circ \, cos\,45^\circ\)
\(\displaystyle 8\,cos\,45^\circ\, sin\,45^\circ \)
\(\displaystyle sin\,60^\circ\, cos\,45^\circ +sin\,30^\circ\,tan\,45^\circ\)
Solution.
\begin{align*}
sin \,30^\circ \, cos\,45^\circ= \amp \frac{1}{2} \times \frac{1}{\sqrt{2}} \\
=\amp \frac{1}{2\sqrt{2}}
\end{align*}
\begin{align*}
8\,cos\,45^\circ\, sin\,45^\circ=\amp \left( 8\times \frac{1}{\sqrt{2}} \right) \times \frac{1}{\sqrt{2}}\\
=\amp \frac{8}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \\
=\amp \frac{8}{\sqrt{2} \times \sqrt{2}} \\
=\amp \frac{8}{2} \\
= \amp 4
\end{align*}
\begin{align*}
sin\,60^\circ\, cos\,45^\circ +sin\,30^\circ\,tan\,45^\circ =\amp \left(\frac{\sqrt{3}}{3} \times \frac{1}{\sqrt{2}}\right) +\left(\frac{1}{2} \times 1 \right)\\
= \amp \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2} \\
=\amp \frac{\sqrt{3}+ \sqrt{2}}{2\sqrt{2}}
\end{align*}
Example 2.4.17.
The angle at the vertex of a cone is \(90^\circ\text{.}\) If the slant height is \(3\sqrt{2\,cm}\text{.}\) Find without using tables:
The diameter of the cone
The height of the cone.
Solution.
Since the vertex angle is \(90^\circ\text{,}\) the cone can be thought of as half of a right circular cone, meaning that the base of the cone forms the hypotenuse of a right-angled triangle.
Let:
\(r\) be the radius of the base,
\(h\) be the height of the cone,
\(l=3\sqrt{2\,cm}\) be the slant height (hypotenuse of the right-angled triangle).
Since the triangle formed is a right-angled isosceles triangle (because of the \(90^\circ\) vertex angle), we can say:
\(r=h\)
Since the right-angled triangle has radius \(r\) and height \(h\text{,}\) we use:
\(r^2=h^2=l^2\)
Since \(r=h\text{,}\) we substitute:
\begin{align*}
r^2+r^2=\amp \left(3\sqrt{2}\right) \\
2r^2= \amp 9 \times 2\\
r^2= \amp 18 \\
^2=\amp 9 \\
r=\amp 3\,cm
\end{align*}
-
The diameter of the cone is:
Diameter \(=2r=2(3)=6\,cm\)
-
The height of the cone;
Since \(h=r\text{,}\) we conclude:
\(h=3\,cm\)
\(\textbf{Exercises}\)
-
The angle made by the arms of an upright pair of dividers and the horizontal is \(45^\circ\text{.}\) The vertical distance from the horizontal to the vertex is \(15\,cm\text{.}\) Find without using tables:
The horizontal distance between the tips of the arms.
The length of the arms.
-
Without using a calculator, find
\(sin\,60^\circ+cos\,30^\circ\)
-
Given that \(\theta=45^\circ\text{,}\) calculate:
\(tan^2\,\theta-sin^2\,\theta\)
-
Using the triangle below, calculate the value of:
\(\displaystyle sin \,30^\circ\)
\(\displaystyle cos \,60^\circ\)
\(\displaystyle tan \,30^\circ\)
-
Given: \(sin\,\theta = \frac{1}{2}\)
Find the angle \(\theta\text{,}\) where \(\theta^\circ \leq \theta \leq 90^\circ\)