To prepare frequency table for the grouped data above, we need to first find the range for the data.
\begin{align*}
\textbf{Range} = \amp \textbf{ Maximum Value} - \textbf{ Minimum Value}
\end{align*}
\begin{align*}
\textbf{Range} = \amp 160 - 120\\
\amp 40
\end{align*}
Next, Determine Class Width
\begin{align*}
\textbf{Class width} = \amp \frac{\textbf{ Range}}{\textbf{ Number of classes}}\\
\amp \frac{40}{5} = 8
\end{align*}
Starting from 120, we create intervals of width 8:
We count how many values fall into each interval.
\(120 - 127\text{:}\) \(120, 120, 125, 125, 125\)
\(128 - 135\text{:}\) \(130, 130, 130, 135, 135, 135, 135\)
\(136 - 143\text{:}\) \(140, 140, 140, 140, 140, 140\)
\(144 - 151\text{:}\) \(145, 145, 145, 145, 150, 150, 150, 150\)
\(152 - 160\text{:}\) \(155, 155, 160, 160\)
Then construct the frequency Table
Table 3.1.15.
| \(120 - 127\) |
\(\cancel{////}\) |
\(5\) |
| \(128 - 135\) |
\(\cancel {//////}\) |
\(7\) |
| \(136 - 143\) |
\(\cancel{/////}\) |
\(6\) |
| \(144 - 151\) |
\(\cancel{///////}\) |
\(8\) |
| \(152 - 160\) |
\(////\) |
\(4\) |