Given the centre of enlargement is
\((0,0)\) and the scale factor
\(k\text{,}\)We find the coordinates of the image as follows;
Applying this to the given co-odinates we get;
(a) for a scale factor of
\(2\)
\begin{align*}
A'=\amp(2\times 6), (2 \times 8)=(12,16) \\
B'=\amp(2\times 8), (2 \times 8)=(16,16) \\
C'=\amp(2\times 12), (2 \times 2)=(24,16) \\
D'=\amp(2\times 14), (2 \times 8)=(28,4) \\
E'=\amp(2\times 10), (2 \times 0)=(20,0) \\
\text{Vertices of the image}= \amp A' (12,16), B'(16,16), C' (24,16), D' (28,4) \text{and} E' (20,0)
\end{align*}
(b) for a scale factor of
\(\frac{1}{2}\)
\begin{align*}
A'=\amp(\frac{1}{2}\times 6), (\frac{1}{2} \times 8)=(3,4) \\
B'=\amp(\frac{1}{2}\times 8), (\frac{1}{2} \times 8)=(4,4) \\
C'=\amp(\frac{1}{2}\times 12), (\frac{1}{2} \times 2)=(6,4) \\
D'=\amp(\frac{1}{2}\times 14), (\frac{1}{2} \times 8)=(7,1) \\
E'=\amp(\frac{1}{2}\times 10), (\frac{1}{2} \times 0)=(5,0) \\
\text{vertices of the image}= \amp A' (3,4), B'(4,4), C' (6,4), D' (7,1) \text{and} E' (5,O)
\end{align*}
(c) for a scale factor of
\(-1\)
\begin{align*}
A'=\amp(-1\times 6), (-1 \times 8)=(-6,-8) \\
B'=\amp(-1\times 8), (-1 \times 8)=(-8,-8) \\
C'=\amp(-1\times 12), (-1 \times 2)=(-12,-8) \\
D'=\amp(-1\times 14), (-1 \times 8)=(-14,-2) \\
E'=\amp(-1\times 10), (-1 \times 0)=(-10,0) \\
\text{vertices of the image}= \amp A' (-6,-8), B'(-8,-8), C' (-12,-8), D' (-14,-2) \text{and} E' (-10,0)
\end{align*}