Generate the table of values for the equations and draw the graph.
\(y = -\frac{1}{2}x + 1\) |
\(x\) |
\(-2\) |
\(0\) |
\(1\) |
\(y\) |
\(0\) |
\(4\) |
\(6\) |
\(x\) |
\(-2\) |
\(0\) |
\(2\) |
\(y\) |
\(2\) |
\(1\) |
\(0\) |
Calculate the gradient
\(m_1,\)for the line
\(y = 2x + 4\) by taking the points
\((-2,0), \, (0,4)\)
\begin{equation*}
\text{Gradient (}m_1\text{)} = \frac{4 - 0}{0 - -2}
\end{equation*}
\begin{equation*}
m_1 = \frac{4}{2} = 2.
\end{equation*}
Calculate the gradient for the other line
\(y = -\frac{1}{2}x + 1\) by taking the points
\((-2,2), \, (0,1)\)
\begin{equation*}
\text{Gradient (}m_2\text{)} = \frac{1 - 2}{0 - -2}
\end{equation*}
\begin{equation*}
m_2 = \frac{-1}{2} = -\frac{1}{2}.
\end{equation*}
Multiply the gradients:
\begin{equation*}
m_1 \times m_2 = 2 \times -\frac{1}{2} = -1.
\end{equation*}
The two line are perpendicular since the product of their gradients is -1.